Nuprl Lemma : btr_Node-left_wf

[v:binary-tree()]. btr_Node-left(v) ∈ binary-tree() supposing ↑btr_Node?(v)


Proof




Definitions occuring in Statement :  btr_Node-left: btr_Node-left(v) btr_Node?: btr_Node?(v) binary-tree: binary-tree() assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Lemmas :  binary-tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf btr_Node?_wf binary-tree_wf
\mforall{}[v:binary-tree()].  btr\_Node-left(v)  \mmember{}  binary-tree()  supposing  \muparrow{}btr\_Node?(v)



Date html generated: 2015_07_17-AM-07_52_11
Last ObjectModification: 2015_01_27-AM-09_34_55

Home Index