Nuprl Lemma : bm_T-right_wf
∀[T,Key:Type]. ∀[v:binary_map(T;Key)].  bm_T-right(v) ∈ binary_map(T;Key) supposing ↑bm_T?(v)
Proof
Definitions occuring in Statement : 
bm_T-right: bm_T-right(v)
, 
bm_T?: bm_T?(v)
, 
binary_map: binary_map(T;Key)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
bm_T?_wf, 
binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[v:binary\_map(T;Key)].    bm\_T-right(v)  \mmember{}  binary\_map(T;Key)  supposing  \muparrow{}bm\_T?(v)
Date html generated:
2015_07_17-AM-08_17_52
Last ObjectModification:
2015_01_27-PM-00_40_04
Home
Index