Nuprl Lemma : bm_T'_wf
∀[T,Key:Type]. ∀[k:Key]. ∀[v:T]. ∀[m1,m2:binary-map(T;Key)]. (bm_T'(k;v;m1;m2) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement :
bm_T': bm_T'(k;v;m1;m2)
,
binary-map: binary-map(T;Key)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Lemmas :
binary_map-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
unit_wf2,
unit_subtype_base,
it_wf,
bm_cnt_prop_E,
binary_map_case_E,
bm_T_wf,
bm_E_wf,
assert_wf,
bm_cnt_prop_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
binary_map_case_T,
binary-map_wf,
bm_cnt_prop_T,
bm_numItems_E,
bm_numItems_T_reduce_lemma,
bm_numItems_E_reduce_lemma,
bm_cnt_prop_E_reduce_lemma,
int_subtype_base,
zero-add,
bm_single_L_wf,
bm_double_L_wf,
lt_int_wf,
assert_of_lt_int,
less_than_wf,
add-zero,
bm_double_R_wf,
bm_single_R_wf,
le_int_wf,
bm_wt_wf,
assert_of_le_int,
bm_numItems_wf,
le_wf,
bm_cnt_prop_pos,
decidable__equal_int,
false_wf,
not-equal-2,
le_antisymmetry_iff,
condition-implies-le,
minus-add,
minus-one-mul,
add-swap,
minus-zero,
add_functionality_wrt_le,
add-associates,
add-commutes,
le-add-cancel2
\mforall{}[T,Key:Type]. \mforall{}[k:Key]. \mforall{}[v:T]. \mforall{}[m1,m2:binary-map(T;Key)]. (bm\_T'(k;v;m1;m2) \mmember{} binary-map(T;Key))
Date html generated:
2015_07_17-AM-08_19_09
Last ObjectModification:
2015_01_27-PM-00_37_54
Home
Index