Nuprl Lemma : bm_T'_wf

[T,Key:Type]. ∀[k:Key]. ∀[v:T]. ∀[m1,m2:binary-map(T;Key)].  (bm_T'(k;v;m1;m2) ∈ binary-map(T;Key))


Proof




Definitions occuring in Statement :  bm_T': bm_T'(k;v;m1;m2) binary-map: binary-map(T;Key) uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf bm_cnt_prop_E binary_map_case_E bm_T_wf bm_E_wf assert_wf bm_cnt_prop_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom binary_map_case_T binary-map_wf bm_cnt_prop_T bm_numItems_E bm_numItems_T_reduce_lemma bm_numItems_E_reduce_lemma bm_cnt_prop_E_reduce_lemma int_subtype_base zero-add bm_single_L_wf bm_double_L_wf lt_int_wf assert_of_lt_int less_than_wf add-zero bm_double_R_wf bm_single_R_wf le_int_wf bm_wt_wf assert_of_le_int bm_numItems_wf le_wf bm_cnt_prop_pos decidable__equal_int false_wf not-equal-2 le_antisymmetry_iff condition-implies-le minus-add minus-one-mul add-swap minus-zero add_functionality_wrt_le add-associates add-commutes le-add-cancel2
\mforall{}[T,Key:Type].  \mforall{}[k:Key].  \mforall{}[v:T].  \mforall{}[m1,m2:binary-map(T;Key)].    (bm\_T'(k;v;m1;m2)  \mmember{}  binary-map(T;Key))



Date html generated: 2015_07_17-AM-08_19_09
Last ObjectModification: 2015_01_27-PM-00_37_54

Home Index