Nuprl Lemma : bm_T'_wf
∀[T,Key:Type]. ∀[k:Key]. ∀[v:T]. ∀[m1,m2:binary-map(T;Key)].  (bm_T'(k;v;m1;m2) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement : 
bm_T': bm_T'(k;v;m1;m2)
, 
binary-map: binary-map(T;Key)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
bm_cnt_prop_E, 
binary_map_case_E, 
bm_T_wf, 
bm_E_wf, 
assert_wf, 
bm_cnt_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
binary_map_case_T, 
binary-map_wf, 
bm_cnt_prop_T, 
bm_numItems_E, 
bm_numItems_T_reduce_lemma, 
bm_numItems_E_reduce_lemma, 
bm_cnt_prop_E_reduce_lemma, 
int_subtype_base, 
zero-add, 
bm_single_L_wf, 
bm_double_L_wf, 
lt_int_wf, 
assert_of_lt_int, 
less_than_wf, 
add-zero, 
bm_double_R_wf, 
bm_single_R_wf, 
le_int_wf, 
bm_wt_wf, 
assert_of_le_int, 
bm_numItems_wf, 
le_wf, 
bm_cnt_prop_pos, 
decidable__equal_int, 
false_wf, 
not-equal-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-zero, 
add_functionality_wrt_le, 
add-associates, 
add-commutes, 
le-add-cancel2
\mforall{}[T,Key:Type].  \mforall{}[k:Key].  \mforall{}[v:T].  \mforall{}[m1,m2:binary-map(T;Key)].    (bm\_T'(k;v;m1;m2)  \mmember{}  binary-map(T;Key))
Date html generated:
2015_07_17-AM-08_19_09
Last ObjectModification:
2015_01_27-PM-00_37_54
Home
Index