Nuprl Lemma : bm_double_L_wf

[T,Key:Type]. ∀[a:Key]. ∀[av:T]. ∀[w,m:binary-map(T;Key)].
  (bm_double_L(a;av;w;m) ∈ binary-map(T;Key)) supposing ((↑bm_T?(bm_T-left(m))) and (↑bm_T?(m)))


Proof




Definitions occuring in Statement :  bm_double_L: bm_double_L(a;av;w;m) binary-map: binary-map(T;Key) bm_T-left: bm_T-left(v) bm_T?: bm_T?(v) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf bm_cnt_prop_E_reduce_lemma binary_map_case_E_reduce_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom binary_map_case_T_reduce_lemma bm_cnt_prop_T bm_T_wf bm_N_wf assert_wf bm_cnt_prop_wf bm_T?_wf bm_T-left_wf binary-map_wf
\mforall{}[T,Key:Type].  \mforall{}[a:Key].  \mforall{}[av:T].  \mforall{}[w,m:binary-map(T;Key)].
    (bm\_double\_L(a;av;w;m)  \mmember{}  binary-map(T;Key))  supposing  ((\muparrow{}bm\_T?(bm\_T-left(m)))  and  (\muparrow{}bm\_T?(m)))



Date html generated: 2015_07_17-AM-08_19_00
Last ObjectModification: 2015_01_27-PM-00_37_18

Home Index