Nuprl Lemma : l_tree_node-right_subtree_wf
∀[L,T:Type]. ∀[v:l_tree(L;T)].  l_tree_node-right_subtree(v) ∈ l_tree(L;T) supposing ↑l_tree_node?(v)
Proof
Definitions occuring in Statement : 
l_tree_node-right_subtree: l_tree_node-right_subtree(v)
, 
l_tree_node?: l_tree_node?(v)
, 
l_tree: l_tree(L;T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
l_tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
l_tree_node?_wf, 
l_tree_wf
\mforall{}[L,T:Type].  \mforall{}[v:l\_tree(L;T)].
    l\_tree\_node-right\_subtree(v)  \mmember{}  l\_tree(L;T)  supposing  \muparrow{}l\_tree\_node?(v)
Date html generated:
2015_07_17-AM-07_41_37
Last ObjectModification:
2015_01_27-AM-09_31_03
Home
Index