Nuprl Lemma : mFO-dest-connective_wf
∀[T:Type]. ∀[F:mFOL() ─→ mFOL() ─→ (T?)]. ∀[fmla:mFOL()]. ∀[knd:Atom].  (let a,b = dest-knd(fmla) in F[a;b] ∈ T?)
Proof
Definitions occuring in Statement : 
mFO-dest-connective: mFO-dest-connective, 
mFOL: mFOL()
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Lemmas : 
mFOconnect?_wf, 
bool_wf, 
eqtt_to_assert, 
eq_atom_wf, 
mFOconnect-knd_wf, 
assert_of_eq_atom, 
mFOconnect-left_wf, 
mFOconnect-right_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
it_wf, 
mFOL_wf, 
unit_wf2
\mforall{}[T:Type].  \mforall{}[F:mFOL()  {}\mrightarrow{}  mFOL()  {}\mrightarrow{}  (T?)].  \mforall{}[fmla:mFOL()].  \mforall{}[knd:Atom].
    (let  a,b  =  dest-knd(fmla)  in
      F[a;b]  \mmember{}  T?)
Date html generated:
2015_07_17-AM-07_54_00
Last ObjectModification:
2015_01_27-AM-10_06_35
Home
Index