Nuprl Lemma : mFO-dest-connective_wf
∀[T:Type]. ∀[F:mFOL() ─→ mFOL() ─→ (T?)]. ∀[fmla:mFOL()]. ∀[knd:Atom]. (let a,b = dest-knd(fmla) in F[a;b] ∈ T?)
Proof
Definitions occuring in Statement :
mFO-dest-connective: mFO-dest-connective,
mFOL: mFOL()
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
unit: Unit
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
union: left + right
,
atom: Atom
,
universe: Type
Lemmas :
mFOconnect?_wf,
bool_wf,
eqtt_to_assert,
eq_atom_wf,
mFOconnect-knd_wf,
assert_of_eq_atom,
mFOconnect-left_wf,
mFOconnect-right_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
it_wf,
mFOL_wf,
unit_wf2
\mforall{}[T:Type]. \mforall{}[F:mFOL() {}\mrightarrow{} mFOL() {}\mrightarrow{} (T?)]. \mforall{}[fmla:mFOL()]. \mforall{}[knd:Atom].
(let a,b = dest-knd(fmla) in
F[a;b] \mmember{} T?)
Date html generated:
2015_07_17-AM-07_54_00
Last ObjectModification:
2015_01_27-AM-10_06_35
Home
Index