Nuprl Lemma : ap-action_wf

[g:s-Group]. ∀[n:SeparationSpace]. ∀[a:sg-action(g;n)]. ∀[h:Point]. ∀[x:Point].  (h(x) ∈ Point)


Proof




Definitions occuring in Statement :  ap-action: h(x) sg-action: sg-action(g;n) s-group: s-Group ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ap-action: h(x) sg-action: sg-action(g;n) subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  ss-point_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf sg-action_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination isect_memberEquality because_Cache instantiate independent_isectElimination

Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].  \mforall{}[a:sg-action(g;n)].  \mforall{}[h:Point].  \mforall{}[x:Point].    (h(x)  \mmember{}  Point)



Date html generated: 2017_10_02-PM-03_25_34
Last ObjectModification: 2017_07_03-PM-01_53_26

Theory : constructive!algebra


Home Index