Nuprl Lemma : ap-action_wf
∀[g:s-Group]. ∀[n:SeparationSpace]. ∀[a:sg-action(g;n)]. ∀[h:Point]. ∀[x:Point].  (h(x) ∈ Point)
Proof
Definitions occuring in Statement : 
ap-action: h(x)
, 
sg-action: sg-action(g;n)
, 
s-group: s-Group
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ap-action: h(x)
, 
sg-action: sg-action(g;n)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
ss-point_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
sg-action_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].  \mforall{}[a:sg-action(g;n)].  \mforall{}[h:Point].  \mforall{}[x:Point].    (h(x)  \mmember{}  Point)
Date html generated:
2017_10_02-PM-03_25_34
Last ObjectModification:
2017_07_03-PM-01_53_26
Theory : constructive!algebra
Home
Index