Nuprl Lemma : sg-action_wf

[g:s-Group]. ∀[n:SeparationSpace].  (sg-action(g;n) ∈ Type)


Proof




Definitions occuring in Statement :  sg-action: sg-action(g;n) s-group: s-Group separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sg-action: sg-action(g;n) subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q so_lambda: λ2x.t[x] s-group: s-Group so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  ss-point_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf all_wf ss-eq_wf sg-op_wf sg-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache productEquality lambdaEquality functionExtensionality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].    (sg-action(g;n)  \mmember{}  Type)



Date html generated: 2017_10_02-PM-03_25_31
Last ObjectModification: 2017_07_03-PM-01_49_37

Theory : constructive!algebra


Home Index