Nuprl Lemma : sg-action_wf
∀[g:s-Group]. ∀[n:SeparationSpace].  (sg-action(g;n) ∈ Type)
Proof
Definitions occuring in Statement : 
sg-action: sg-action(g;n)
, 
s-group: s-Group
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sg-action: sg-action(g;n)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
s-group: s-Group
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
ss-point_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
all_wf, 
ss-eq_wf, 
sg-op_wf, 
sg-id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
productEquality, 
lambdaEquality, 
functionExtensionality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].    (sg-action(g;n)  \mmember{}  Type)
Date html generated:
2017_10_02-PM-03_25_31
Last ObjectModification:
2017_07_03-PM-01_49_37
Theory : constructive!algebra
Home
Index