Nuprl Lemma : interval-ss_wf

[I:Interval]. (interval-ss(I) ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  interval-ss: interval-ss(I) separation-space: SeparationSpace interval: Interval uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] real: btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: Point=P #=Sep symm=Sym cotrans=C real-ss: record-select: r.x ss-point: Point(ss) subtype_rel: A ⊆B so_lambda: λ2x.t[x] interval-ss: interval-ss(I) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  interval_wf ss-point_wf real_wf subtype_rel_self i-member_wf real-ss_wf set-ss_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesisEquality lambdaEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  (interval-ss(I)  \mmember{}  SeparationSpace)



Date html generated: 2018_07_29-AM-10_11_33
Last ObjectModification: 2018_06_28-PM-05_30_01

Theory : constructive!algebra


Home Index