Nuprl Lemma : interval-ss_wf
∀[I:Interval]. (interval-ss(I) ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
interval-ss: interval-ss(I), 
separation-space: SeparationSpace, 
interval: Interval, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
real: ℝ, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-ss: Point=P #=Sep symm=Sym cotrans=C, 
real-ss: ℝ, 
record-select: r.x, 
ss-point: Point(ss), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
interval-ss: interval-ss(I), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
interval_wf, 
ss-point_wf, 
real_wf, 
subtype_rel_self, 
i-member_wf, 
real-ss_wf, 
set-ss_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  (interval-ss(I)  \mmember{}  SeparationSpace)
Date html generated:
2018_07_29-AM-10_11_33
Last ObjectModification:
2018_06_28-PM-05_30_01
Theory : constructive!algebra
Home
Index