Nuprl Lemma : product-Leibniz-type

A:Type. ∀B:A ⟶ Type.  ((∀x,y:A.  Dec(x y ∈ A))  (∀a:A. Leibniz-type{i:l}(B[a]))  Leibniz-type{i:l}(a:A × B[a]))


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) decidable: Dec(P) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q iff: ⇐⇒ Q not: ¬A false: False rev_implies:  Q pi1: fst(t) top: Top so_lambda: λ2x.t[x] uimplies: supposing a pi2: snd(t) decidable: Dec(P) guard: {T}
Lemmas referenced :  Leibniz-type_wf decidable_wf equal_wf istype-universe subtype_rel_self istype-void pi1_wf_top pi2_wf subtype_rel-equal subtype_rel_product top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution sqequalRule cut hypothesis promote_hyp thin productElimination functionIsType universeIsType hypothesisEquality introduction extract_by_obid isectElimination cumulativity applyEquality because_Cache inhabitedIsType instantiate universeEquality productIsType unionIsType equalityIstype rename dependent_pairFormation_alt lambdaEquality_alt functionExtensionality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality independent_pairEquality isect_memberEquality_alt voidElimination independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality setElimination unionElimination inrFormation_alt inlFormation_alt hyp_replacement dependent_pairEquality_alt

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.
    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}a:A.  Leibniz-type\{i:l\}(B[a]))  {}\mRightarrow{}  Leibniz-type\{i:l\}(a:A  \mtimes{}  B[a]))



Date html generated: 2019_10_31-AM-07_26_05
Last ObjectModification: 2019_09_19-PM-06_44_54

Theory : constructive!algebra


Home Index