Nuprl Lemma : product-Leibniz-type
∀A:Type. ∀B:A ⟶ Type.  ((∀x,y:A.  Dec(x = y ∈ A)) 
⇒ (∀a:A. Leibniz-type{i:l}(B[a])) 
⇒ Leibniz-type{i:l}(a:A × B[a]))
Proof
Definitions occuring in Statement : 
Leibniz-type: Leibniz-type{i:l}(T)
, 
decidable: Dec(P)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
Leibniz-type: Leibniz-type{i:l}(T)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
pi2: snd(t)
, 
decidable: Dec(P)
, 
guard: {T}
Lemmas referenced : 
Leibniz-type_wf, 
decidable_wf, 
equal_wf, 
istype-universe, 
subtype_rel_self, 
istype-void, 
pi1_wf_top, 
pi2_wf, 
subtype_rel-equal, 
subtype_rel_product, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
productElimination, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
instantiate, 
universeEquality, 
productIsType, 
unionIsType, 
equalityIstype, 
rename, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
unionElimination, 
inrFormation_alt, 
inlFormation_alt, 
hyp_replacement, 
dependent_pairEquality_alt
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.
    ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}a:A.  Leibniz-type\{i:l\}(B[a]))  {}\mRightarrow{}  Leibniz-type\{i:l\}(a:A  \mtimes{}  B[a]))
Date html generated:
2019_10_31-AM-07_26_05
Last ObjectModification:
2019_09_19-PM-06_44_54
Theory : constructive!algebra
Home
Index