Nuprl Lemma : coSet-equality2
āx,y:coSet{i:l}.
((āT:š'. ((((a:Type Ć (a ā¶ T)) ār T) ā§ (coSet{i:l} ār T))
ā (x = y ā T)
ā (x = y ā (a:Type Ć (a ā¶ T)))))
ā (x = y ā coSet{i:l}))
Proof
Definitions occuring in Statement :
coSet: coSet{i:l}
,
subtype_rel: A ār B
,
all: āx:A. B[x]
,
implies: P
ā Q
,
and: P ā§ Q
,
function: x:A ā¶ B[x]
,
product: x:A Ć B[x]
,
universe: Type
,
equal: s = t ā T
Definitions unfolded in proof :
all: āx:A. B[x]
,
member: t ā T
,
implies: P
ā Q
,
rev_implies: P
ā Q
,
and: P ā§ Q
,
iff: P
āā Q
,
subtype_rel: A ār B
,
so_lambda: Ī»2x y.t[x; y]
,
cand: A cā§ B
,
so_apply: x[s1;s2]
,
uall: ā[x:A]. B[x]
,
prop: ā
,
exists: āx:A. B[x]
,
coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y])
,
so_apply: x[s]
,
so_lambda: Ī»2x.t[x]
,
guard: {T}
,
uimplies: b supposing a
,
true: True
,
squash: āT
Lemmas referenced :
coSet_wf,
coSet-equality,
subtype_rel_self,
coSet-bisimulation_wf,
equal_wf,
istype-universe,
subtype_rel_wf,
subtype_rel_dep_function,
subtype_rel_product,
iff_weakening_equal,
coSet_subtype,
true_wf,
squash_wf,
subtype_coSet
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
inhabitedIsType,
hypothesisEquality,
universeIsType,
cut,
introduction,
extract_by_obid,
hypothesis,
independent_functionElimination,
productElimination,
thin,
dependent_functionElimination,
sqequalHypSubstitution,
universeEquality,
applyEquality,
productIsType,
independent_pairFormation,
sqequalRule,
because_Cache,
isectElimination,
instantiate,
productEquality,
lambdaEquality_alt,
dependent_pairFormation_alt,
cumulativity,
functionEquality,
functionIsType,
equalityIsType1,
rename,
independent_isectElimination,
baseClosed,
imageMemberEquality,
natural_numberEquality,
equalitySymmetry,
equalityTransitivity,
imageElimination,
equalityIstype,
hypothesis_subsumption,
dependent_pairEquality_alt,
functionExtensionality
Latex:
\mforall{}x,y:coSet\{i:l\}.
((\mforall{}T:\mBbbU{}'. ((((a:Type \mtimes{} (a {}\mrightarrow{} T)) \msubseteq{}r T) \mwedge{} (coSet\{i:l\} \msubseteq{}r T)) {}\mRightarrow{} (x = y) {}\mRightarrow{} (x = y))) {}\mRightarrow{} (x = y))
Date html generated:
2019_10_31-AM-06_32_55
Last ObjectModification:
2018_12_13-PM-02_36_13
Theory : constructive!set!theory
Home
Index