Nuprl Lemma : coSet-equality2

āˆ€x,y:coSet{i:l}.
  ((āˆ€T:š•Œ'. ((((a:Type Ć— (a āŸ¶ T)) āŠ†T) āˆ§ (coSet{i:l} āŠ†T)) ā‡’ (x y āˆˆ T) ā‡’ (x y āˆˆ (a:Type Ć— (a āŸ¶ T)))))
  ā‡’ (x y āˆˆ coSet{i:l}))


Proof




Definitions occuring in Statement :  coSet: coSet{i:l} subtype_rel: A āŠ†B all: āˆ€x:A. B[x] implies: ā‡’ Q and: P āˆ§ Q function: x:A āŸ¶ B[x] product: x:A Ć— B[x] universe: Type equal: t āˆˆ T
Definitions unfolded in proof :  all: āˆ€x:A. B[x] member: t āˆˆ T implies: ā‡’ Q rev_implies: ā‡ Q and: P āˆ§ Q iff: ā‡ā‡’ Q subtype_rel: A āŠ†B so_lambda: Ī»2y.t[x; y] cand: cāˆ§ B so_apply: x[s1;s2] uall: āˆ€[x:A]. B[x] prop: ā„™ exists: āˆƒx:A. B[x] coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y]) so_apply: x[s] so_lambda: Ī»2x.t[x] guard: {T} uimplies: supposing a true: True squash: ā†“T
Lemmas referenced :  coSet_wf coSet-equality subtype_rel_self coSet-bisimulation_wf equal_wf istype-universe subtype_rel_wf subtype_rel_dep_function subtype_rel_product iff_weakening_equal coSet_subtype true_wf squash_wf subtype_coSet
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid hypothesis independent_functionElimination productElimination thin dependent_functionElimination sqequalHypSubstitution universeEquality applyEquality productIsType independent_pairFormation sqequalRule because_Cache isectElimination instantiate productEquality lambdaEquality_alt dependent_pairFormation_alt cumulativity functionEquality functionIsType equalityIsType1 rename independent_isectElimination baseClosed imageMemberEquality natural_numberEquality equalitySymmetry equalityTransitivity imageElimination equalityIstype hypothesis_subsumption dependent_pairEquality_alt functionExtensionality

Latex:
\mforall{}x,y:coSet\{i:l\}.
    ((\mforall{}T:\mBbbU{}'.  ((((a:Type  \mtimes{}  (a  {}\mrightarrow{}  T))  \msubseteq{}r  T)  \mwedge{}  (coSet\{i:l\}  \msubseteq{}r  T))  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (x  =  y)))  {}\mRightarrow{}  (x  =  y))



Date html generated: 2019_10_31-AM-06_32_55
Last ObjectModification: 2018_12_13-PM-02_36_13

Theory : constructive!set!theory


Home Index