Nuprl Lemma : coSet-equality
∀x,y:coSet{i:l}.
  (x = y ∈ coSet{i:l} 
⇐⇒ ∃R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ'. (coSet-bisimulation{i:l}(x,y.R[x;y]) ∧ R[x;y]))
Proof
Definitions occuring in Statement : 
coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y])
, 
coSet: coSet{i:l}
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y])
, 
istype: istype(T)
, 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation
Lemmas referenced : 
corec_wf, 
istype-universe, 
coinduction-principle, 
subtype_rel_product, 
subtype_rel_function, 
subtype_rel_wf, 
strong-continuous-depproduct, 
strong-continuous-function, 
continuous-id, 
subtype_rel_weakening, 
nat_wf, 
istype-nat, 
coSet-bisimulation_wf, 
subtype_rel_self, 
coSet_wf, 
equal_wf, 
coSet_subtype, 
subtype_coSet, 
subtype_rel_dep_function, 
corec-subtype-coSet, 
coSet-subtype-corec, 
equal_functionality_wrt_subtype_rel2, 
subtype_rel_transitivity
Rules used in proof : 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
productEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_pairFormation, 
isect_memberFormation_alt, 
because_Cache, 
lambdaFormation_alt, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
isectEquality, 
applyEquality, 
functionIsType, 
equalityIstype, 
productIsType, 
dependent_pairFormation_alt, 
productElimination, 
equalityIsType1, 
hypothesis_subsumption, 
functionExtensionality, 
dependent_pairEquality_alt, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}x,y:coSet\{i:l\}.
    (x  =  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'.  (coSet-bisimulation\{i:l\}(x,y.R[x;y])  \mwedge{}  R[x;y]))
Date html generated:
2019_10_31-AM-06_32_51
Last ObjectModification:
2018_12_13-PM-02_29_34
Theory : constructive!set!theory
Home
Index