Nuprl Lemma : coSet-equality

x,y:coSet{i:l}.
  (x y ∈ coSet{i:l} ⇐⇒ ∃R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ'. (coSet-bisimulation{i:l}(x,y.R[x;y]) ∧ R[x;y]))


Proof




Definitions occuring in Statement :  coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y]) coSet: coSet{i:l} prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) guard: {T} iff: ⇐⇒ Q implies:  Q rev_implies:  Q exists: x:A. B[x] prop: cand: c∧ B coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y]) istype: istype(T) F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation
Lemmas referenced :  corec_wf istype-universe coinduction-principle subtype_rel_product subtype_rel_function subtype_rel_wf strong-continuous-depproduct strong-continuous-function continuous-id subtype_rel_weakening nat_wf istype-nat coSet-bisimulation_wf subtype_rel_self coSet_wf equal_wf coSet_subtype subtype_coSet subtype_rel_dep_function corec-subtype-coSet coSet-subtype-corec equal_functionality_wrt_subtype_rel2 subtype_rel_transitivity
Rules used in proof :  cut instantiate introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality_alt productEquality universeEquality functionEquality cumulativity hypothesisEquality hypothesis inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination independent_pairFormation isect_memberFormation_alt because_Cache lambdaFormation_alt universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies isectEquality applyEquality functionIsType equalityIstype productIsType dependent_pairFormation_alt productElimination equalityIsType1 hypothesis_subsumption functionExtensionality dependent_pairEquality_alt independent_functionElimination dependent_functionElimination

Latex:
\mforall{}x,y:coSet\{i:l\}.
    (x  =  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'.  (coSet-bisimulation\{i:l\}(x,y.R[x;y])  \mwedge{}  R[x;y]))



Date html generated: 2019_10_31-AM-06_32_51
Last ObjectModification: 2018_12_13-PM-02_29_34

Theory : constructive!set!theory


Home Index