Nuprl Lemma : coinduction-principle
∀[F:Type ⟶ Type]
  ∀[R:corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ]
    ∀[x,y:corec(T.F[T])].  x = y ∈ corec(T.F[T]) supposing R[x;y] supposing x,y.R[x;y] is an T.F[T]-bisimulation 
  supposing ContinuousMonotone(T.F[T])
Proof
Definitions occuring in Statement : 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation, 
corec: corec(T.F[T]), 
continuous-monotone: ContinuousMonotone(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
subtract: n - m, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
not: ¬A, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
top: Top, 
guard: {T}, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
nequal: a ≠ b ∈ T , 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation, 
corec: corec(T.F[T]), 
type-continuous: Continuous(T.F[T]), 
type-monotone: Monotone(T.F[T]), 
continuous-monotone: ContinuousMonotone(T.F[T])
Lemmas referenced : 
F-bisimulation_wf, 
corec_wf, 
continuous-monotone_wf, 
nat_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
primrec0_lemma, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
le_weakening, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
primrec-unroll, 
int_seg_wf, 
top_wf, 
le_wf, 
not-equal-2, 
not-le-2, 
primrec_wf, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
lambdaEquality, 
applyEquality, 
universeEquality, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
minusEquality, 
intEquality, 
addEquality, 
productElimination, 
independent_pairFormation, 
unionElimination, 
voidEquality, 
functionExtensionality, 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
lambdaFormation, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
dependent_set_memberEquality, 
isectEquality, 
independent_pairEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[R:corec(T.F[T])  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}[x,y:corec(T.F[T])].    x  =  y  supposing  R[x;y]  supposing  x,y.R[x;y]  is  an  T.F[T]-bisimulation 
    supposing  ContinuousMonotone(T.F[T])
Date html generated:
2019_06_20-PM-00_37_14
Last ObjectModification:
2018_08_07-PM-05_54_06
Theory : co-recursion
Home
Index