Nuprl Lemma : intersectionset_functionality

a,b:coSet{i:l}.  (seteq(a;b)  seteq(⋂(a);⋂(b)))


Proof




Definitions occuring in Statement :  intersectionset: (s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q intersectionset: (s) so_lambda: λ2x.t[x] prop: so_apply: x[s] set-predicate: set-predicate{i:l}(s;a.P[a]) allsetmem: a∈A.P[a] cand: c∧ B guard: {T}
Lemmas referenced :  co-seteq-iff intersectionset_wf setmem-sub-coset unionset_wf allsetmem_wf setmem_wf coSet_wf setmem_functionality_1 set-item_wf set-dom_wf seteq_wf allsetmem-iff setmem_functionality seteq_weakening unionset_functionality seteq_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis productElimination independent_functionElimination independent_pairFormation sqequalRule lambdaEquality setElimination rename setEquality cumulativity because_Cache

Latex:
\mforall{}a,b:coSet\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(\mcap{}(a);\mcap{}(b)))



Date html generated: 2019_10_31-AM-06_33_46
Last ObjectModification: 2018_08_31-AM-00_43_42

Theory : constructive!set!theory


Home Index