Nuprl Lemma : unionset_functionality

a,b:coSet{i:l}.  (seteq(a;b)  seteq(⋃(a);⋃(b)))


Proof




Definitions occuring in Statement :  unionset: (s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  exists: x:A. B[x] guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  seteq_wf setmem-unionset iff_wf seteq_weakening setmem_functionality setmem_wf coSet_wf exists_wf unionset_wf co-seteq-iff
Rules used in proof :  existsLevelFunctionality andLevelFunctionality existsFunctionality impliesFunctionality addLevel because_Cache cumulativity productEquality lambdaEquality sqequalRule instantiate independent_pairFormation independent_functionElimination productElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b:coSet\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(\mcup{}(a);\mcup{}(b)))



Date html generated: 2018_07_29-AM-09_53_04
Last ObjectModification: 2018_07_18-PM-02_46_28

Theory : constructive!set!theory


Home Index