Nuprl Lemma : relclosed-iff-funclosed
∀R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ
  ((∀x:Set{i:l}. ∃y:Set{i:l}. ∀a:Set{i:l}. (R[x;a] 
⇐⇒ (a ∈ y)))
  
⇒ (∃f:Set{i:l} ⟶ Set{i:l}. ∀s:Set{i:l}. (closed(x,a.R[x;a])s 
⇐⇒ f-closed(s))))
Proof
Definitions occuring in Statement : 
funclosed-set: f-closed(s)
, 
relclosed-set: closed(x,a.R[x; a])s
, 
setmem: (x ∈ s)
, 
Set: Set{i:l}
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
relclosed-set: closed(x,a.R[x; a])s
, 
funclosed-set: f-closed(s)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset-iff, 
subtype_rel_self, 
setsubset_wf, 
equal_wf, 
setmem_wf, 
exists_wf, 
funclosed-set_wf, 
relclosed-set_wf, 
iff_wf, 
Set_wf, 
all_wf
Rules used in proof : 
impliesLevelFunctionality, 
allLevelFunctionality, 
allFunctionality, 
impliesFunctionality, 
addLevel, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
rename, 
universeEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
because_Cache, 
hypothesisEquality, 
dependent_pairFormation, 
productElimination, 
sqequalHypSubstitution, 
thin, 
promote_hyp, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}x:Set\{i:l\}.  \mexists{}y:Set\{i:l\}.  \mforall{}a:Set\{i:l\}.  (R[x;a]  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  y)))
    {}\mRightarrow{}  (\mexists{}f:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}s:Set\{i:l\}.  (closed(x,a.R[x;a])s  \mLeftarrow{}{}\mRightarrow{}  f-closed(s))))
Date html generated:
2018_05_29-PM-01_55_04
Last ObjectModification:
2018_05_25-AM-08_55_36
Theory : constructive!set!theory
Home
Index