Nuprl Lemma : relclosed-iff-funclosed

R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ
  ((∀x:Set{i:l}. ∃y:Set{i:l}. ∀a:Set{i:l}. (R[x;a] ⇐⇒ (a ∈ y)))
   (∃f:Set{i:l} ⟶ Set{i:l}. ∀s:Set{i:l}. (closed(x,a.R[x;a])s ⇐⇒ f-closed(s))))


Proof




Definitions occuring in Statement :  funclosed-set: f-closed(s) relclosed-set: closed(x,a.R[x; a])s setmem: (x ∈ s) Set: Set{i:l} prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B relclosed-set: closed(x,a.R[x; a])s funclosed-set: f-closed(s) pi1: fst(t) and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  setsubset-iff subtype_rel_self setsubset_wf equal_wf setmem_wf exists_wf funclosed-set_wf relclosed-set_wf iff_wf Set_wf all_wf
Rules used in proof :  impliesLevelFunctionality allLevelFunctionality allFunctionality impliesFunctionality addLevel independent_pairFormation independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity functionExtensionality rename universeEquality functionEquality cumulativity applyEquality lambdaEquality sqequalRule isectElimination extract_by_obid introduction instantiate because_Cache hypothesisEquality dependent_pairFormation productElimination sqequalHypSubstitution thin promote_hyp hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}x:Set\{i:l\}.  \mexists{}y:Set\{i:l\}.  \mforall{}a:Set\{i:l\}.  (R[x;a]  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  y)))
    {}\mRightarrow{}  (\mexists{}f:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}s:Set\{i:l\}.  (closed(x,a.R[x;a])s  \mLeftarrow{}{}\mRightarrow{}  f-closed(s))))



Date html generated: 2018_05_29-PM-01_55_04
Last ObjectModification: 2018_05_25-AM-08_55_36

Theory : constructive!set!theory


Home Index