Nuprl Lemma : setmem-productset

a,b,p:coSet{i:l}.  ((p ∈ b) ⇐⇒ ∃u,v:coSet{i:l}. ((u ∈ a) ∧ (v ∈ b) ∧ seteq(p;(u,v))))


Proof




Definitions occuring in Statement :  productset: b orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  orderedpairset: (a,b) cand: c∧ B exists: x:A. B[x] top: Top productset: b so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q mk-coset: mk-coset(T;f) uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  singleset_functionality seteq_weakening pairset_functionality singleset_wf pairset_wf seteq_functionality setmem-coset setmem-mk-coset orderedpairset_wf seteq_wf coSet_wf exists_wf mk-coset_wf productset_wf setmem_wf coSet_subtype subtype_coSet
Rules used in proof :  independent_functionElimination spreadEquality independent_pairEquality dependent_functionElimination dependent_pairFormation voidEquality voidElimination isect_memberEquality because_Cache cumulativity productEquality lambdaEquality instantiate isectElimination independent_pairFormation thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction cut hypothesis_subsumption lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b,p:coSet\{i:l\}.    ((p  \mmember{}  a  x  b)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}u,v:coSet\{i:l\}.  ((u  \mmember{}  a)  \mwedge{}  (v  \mmember{}  b)  \mwedge{}  seteq(p;(u,v))))



Date html generated: 2018_07_29-AM-10_04_03
Last ObjectModification: 2018_07_18-PM-11_45_25

Theory : constructive!set!theory


Home Index