Nuprl Lemma : transitive-set-iff2
∀s:Set{i:l}. (transitive-set(s) 
⇐⇒ ∀x:Set{i:l}. ((x ∈ s) 
⇒ (x ⊆ s)))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s)
, 
setsubset: (a ⊆ b)
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
transitive-set: transitive-set(s)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet-mem-Set-implies-Set, 
iff_wf, 
allsetmem_wf, 
seteq_wf, 
seteq_weakening, 
setsubset_functionality, 
allsetmem-iff, 
setsubset_wf, 
coSet_wf, 
all_wf, 
Set_wf, 
set-subtype-coSet, 
setmem_wf
Rules used in proof : 
dependent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
setEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
impliesFunctionality, 
productElimination, 
addLevel, 
functionEquality, 
cumulativity, 
lambdaEquality, 
instantiate, 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
independent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:Set\{i:l\}.  (transitive-set(s)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:Set\{i:l\}.  ((x  \mmember{}  s)  {}\mRightarrow{}  (x  \msubseteq{}  s)))
Date html generated:
2018_07_29-AM-10_02_46
Last ObjectModification:
2018_07_18-PM-10_06_18
Theory : constructive!set!theory
Home
Index