Nuprl Lemma : I-path-morph_wf2

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I).
w:cubical-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;K;f;alpha;w) ∈ cubical-path(X;A;a;b;K;f(alpha)))


Proof




Definitions occuring in Statement :  cubical-path: cubical-path(X;A;a;b;I;alpha) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cubical-path: cubical-path(X;A;a;b;I;alpha) member: t ∈ T uall: [x:A]. B[x] quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop:
Lemmas referenced :  cubical-path_wf cube-set-restriction_wf I-path_wf quotient-member-eq path-eq_wf path-eq-equiv I-path-morph_wf I-path-morph_functionality equal_wf equal-wf-base I-cube_wf name-morph_wf list_wf coordinate_name_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution pointwiseFunctionalityForEquality cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination productEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}w:cubical-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;K;f;alpha;w)  \mmember{}  cubical-path(X;A;a;b;K;f(alpha)))



Date html generated: 2018_05_23-PM-06_55_57
Last ObjectModification: 2018_05_18-AM-08_31_38

Theory : cubical!sets


Home Index