Nuprl Lemma : cc-fst-csm-adjoin

[Gamma,Delta:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[sigma:Delta ⟶ Gamma]. ∀[u:{Delta ⊢ _:(A)sigma}].
  (p (sigma;u) sigma ∈ Delta ⟶ Gamma)


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-set-map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-comp: cat-comp(C) compose: g trans-comp: t1 t2 csm-ap: (s)x pi1: fst(t) pi2: snd(t) cat-arrow: cat-arrow(C) type-cat: TypeCat functor-ob: ob(F) csm-comp: F csm-adjoin: (s;u) cc-fst: p cubical-set: CubicalSet and: P ∧ Q list: List name-cat: NameCat cat-ob: cat-ob(C) subtype_rel: A ⊆B functor-arrow: arrow(F) all: x:A. B[x]
Lemmas referenced :  cubical-term_wf csm-ap-type_wf cube-set-map_wf cubical-type_wf cubical-set_wf list_wf coordinate_name_wf name-morph_wf compose_wf subtype_rel_self cat-ob_wf name-cat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesis universeIsType extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType lemma_by_obid functionExtensionality productElimination applyEquality functionIsType because_Cache equalityIsType1

Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[sigma:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    (p  o  (sigma;u)  =  sigma)



Date html generated: 2019_11_05-PM-00_26_12
Last ObjectModification: 2018_11_10-PM-03_06_01

Theory : cubical!sets


Home Index