Nuprl Lemma : cubical-fst-pair
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].
  (cubical-pair(u;v).1 = u ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
cubical-pair: cubical-pair(u;v)
, 
cubical-fst: p.1
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:AF}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-term: {X ⊢ _:AF}
, 
uimplies: b supposing a
, 
cubical-pair: cubical-pair(u;v)
, 
cubical-fst: p.1
, 
pi1: fst(t)
, 
cubical-term-at: u(a)
, 
cubical-type-at: A(a)
Lemmas referenced : 
cubical-term-equal, 
cubical-fst_wf, 
cubical-pair_wf, 
cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
csm-id-adjoin_wf, 
cubical-type_wf, 
cubical-set_wf, 
cubical-term-at_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
universeIsType, 
functionExtensionality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
    (cubical-pair(u;v).1  =  u)
Date html generated:
2020_05_21-AM-10_51_19
Last ObjectModification:
2020_01_05-AM-00_22_20
Theory : cubical!sets
Home
Index