Nuprl Lemma : cubical-fst-pair

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].
  (cubical-pair(u;v).1 u ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-pair: cubical-pair(u;v) cubical-fst: p.1 csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-term: {X ⊢ _:AF} uimplies: supposing a cubical-pair: cubical-pair(u;v) cubical-fst: p.1 pi1: fst(t) cubical-term-at: u(a) cubical-type-at: A(a)
Lemmas referenced :  cubical-term-equal cubical-fst_wf cubical-pair_wf cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf cubical-type_wf cubical-set_wf cubical-term-at_wf I-cube_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename because_Cache sqequalRule independent_isectElimination universeIsType functionExtensionality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
    (cubical-pair(u;v).1  =  u)



Date html generated: 2020_05_21-AM-10_51_19
Last ObjectModification: 2020_01_05-AM-00_22_20

Theory : cubical!sets


Home Index