Nuprl Lemma : cubical-pair_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}].  (cubical-pair(u;v) ∈ {X ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  cubical-pair: cubical-pair(u;v) cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-pair: cubical-pair(u;v) cubical-term: {X ⊢ _:AF} cubical-sigma: Σ B pi1: fst(t) cubical-type-at: A(a) subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a top: Top squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q pi2: snd(t) cubical-term-at: u(a) cubical-type: {X ⊢ _} cubical-type-ap-morph: (u f) csm-ap-type: (AF)s csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x type-cat: TypeCat cat-id: cat-id(C) cc-adjoin-cube: (v;u) identity-trans: identity-trans(C;D;F) mk-nat-trans: |→ T[x] cube-set-restriction: f(s) cube-context-adjoin: X.A so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf cubical-type_wf cubical-set_wf subtype_rel_self cubical-type-at_wf subtype_rel-equal cc-adjoin-cube_wf csm-type-at equal_wf squash_wf true_wf csm-id-adjoin-ap iff_weakening_equal I-cube_wf list_wf coordinate_name_wf cubical-term-at-morph cube-set-restriction_wf name-morph_wf ident_trans_ap_lemma csm-ap_wf subtype_rel_weakening ext-eq_weakening cubical-sigma_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache setElimination rename dependent_set_memberEquality lambdaEquality dependent_pairEquality applyEquality dependent_functionElimination independent_isectElimination voidElimination voidEquality instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination promote_hyp lambdaFormation functionExtensionality functionEquality hyp_replacement

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
    (cubical-pair(u;v)  \mmember{}  \{X  \mvdash{}  \_:\mSigma{}  A  B\})



Date html generated: 2018_05_23-PM-06_31_46
Last ObjectModification: 2018_05_20-PM-04_20_21

Theory : cubical!sets


Home Index