Nuprl Lemma : csm-id-adjoin_wf

[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[u:{Gamma ⊢ _:A}].  ([u] ∈ Gamma ⟶ Gamma.A)


Proof




Definitions occuring in Statement :  csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-id-adjoin: [u] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-adjoin_wf csm-id_wf subtype_rel-equal cubical-term_wf csm-ap-type_wf equal_wf squash_wf true_wf csm-ap-id-type iff_weakening_equal cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis applyEquality independent_isectElimination instantiate lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma  \mvdash{}  \_:A\}].    ([u]  \mmember{}  Gamma  {}\mrightarrow{}  Gamma.A)



Date html generated: 2017_10_05-AM-10_13_34
Last ObjectModification: 2017_07_28-AM-11_18_59

Theory : cubical!sets


Home Index