Nuprl Lemma : csm-id-adjoin_wf
∀[Gamma:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[u:{Gamma ⊢ _:A}].  ([u] ∈ Gamma ⟶ Gamma.A)
Proof
Definitions occuring in Statement : 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-id-adjoin: [u]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
csm-adjoin_wf, 
csm-id_wf, 
subtype_rel-equal, 
cubical-term_wf, 
csm-ap-type_wf, 
equal_wf, 
squash_wf, 
true_wf, 
csm-ap-id-type, 
iff_weakening_equal, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
instantiate, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[Gamma:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma  \mvdash{}  \_:A\}].    ([u]  \mmember{}  Gamma  {}\mrightarrow{}  Gamma.A)
Date html generated:
2017_10_05-AM-10_13_34
Last ObjectModification:
2017_07_28-AM-11_18_59
Theory : cubical!sets
Home
Index