Nuprl Lemma : csm-adjoin_wf

[Gamma,Delta:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[sigma:Delta ⟶ Gamma]. ∀[u:{Delta ⊢ _:(A)sigma}].
  ((sigma;u) ∈ Delta ⟶ Gamma.A)


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-adjoin: (s;u) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: cc-adjoin-cube: (v;u) cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True cubical-term-at: u(a)
Lemmas referenced :  cube-set-map-is cube-context-adjoin_wf I-cube_wf list_wf coordinate_name_wf name-morph_wf all_wf equal_wf cube-set-restriction_wf cubical-term_wf csm-ap-type_wf cube-set-map_wf cubical-type_wf cubical-set_wf cc-adjoin-cube_wf csm-ap_wf subtype_rel-equal cubical-type-at_wf csm-type-at cc-adjoin-cube-restriction squash_wf true_wf csm-ap-restriction iff_weakening_equal cubical-type-ap-morph_wf cubical-term-at_wf cubical-term-at-morph csm-cubical-type-ap-morph
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality lambdaEquality lambdaFormation because_Cache functionEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependent_functionElimination setElimination rename independent_isectElimination voidElimination voidEquality imageElimination universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination natural_numberEquality instantiate

Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[sigma:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    ((sigma;u)  \mmember{}  Delta  {}\mrightarrow{}  Gamma.A)



Date html generated: 2017_10_05-AM-10_13_31
Last ObjectModification: 2017_07_28-AM-11_18_56

Theory : cubical!sets


Home Index