Nuprl Lemma : cubical-pair-eta

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:Σ B}].  (cubical-pair(w.1;w.2) w ∈ {X ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  cubical-pair: cubical-pair(u;v) cubical-snd: p.2 cubical-fst: p.1 cubical-sigma: Σ B cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-term: {X ⊢ _:AF} cubical-snd: p.2 cubical-fst: p.1 cubical-pair: cubical-pair(u;v) cubical-sigma: Σ B pi1: fst(t) all: x:A. B[x] implies:  Q pi2: snd(t) uimplies: supposing a and: P ∧ Q
Lemmas referenced :  cubical-term-equal cubical-sigma_wf cubical-pair_wf cubical-fst_wf cubical-snd_wf subtype_rel-equal cubical-type-at_wf cube-context-adjoin_wf cc-adjoin-cube_wf I-cube_wf list_wf coordinate_name_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename because_Cache sqequalRule functionExtensionality_alt independent_pairEquality inhabitedIsType lambdaFormation_alt productElimination equalityIstype equalityTransitivity dependent_functionElimination independent_functionElimination dependent_pairEquality_alt independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality universeIsType

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].    (cubical-pair(w.1;w.2)  =  w)



Date html generated: 2020_05_21-AM-10_51_23
Last ObjectModification: 2020_01_01-PM-02_52_02

Theory : cubical!sets


Home Index