Nuprl Lemma : cubical-path-same-name
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[p,q:I-path(X;A;a;b;I;alpha)].
  (((fst(p)) = (fst(q)) ∈ Cname) 
⇒ (p = q ∈ cubical-path(X;A;a;b;I;alpha)) 
⇒ (p = q ∈ I-path(X;A;a;b;I;alpha)))
Proof
Definitions occuring in Statement : 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
top: Top
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
subtype_quotient, 
path-eq_wf, 
I-path_wf, 
path-eq-equiv, 
equal_wf, 
cubical-path_wf, 
coordinate_name_wf, 
pi1_wf_top, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
member_wf, 
path-eq-same-name
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
hypothesis, 
independent_isectElimination, 
isect_memberFormation, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
axiomEquality, 
pertypeElimination, 
productEquality, 
independent_functionElimination
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[p,q:I-path(X;A;a;b;I;alpha)].
    (((fst(p))  =  (fst(q)))  {}\mRightarrow{}  (p  =  q)  {}\mRightarrow{}  (p  =  q))
Date html generated:
2017_10_05-PM-03_55_16
Last ObjectModification:
2017_07_28-AM-11_28_15
Theory : cubical!sets
Home
Index