Nuprl Lemma : discrete-cube_wf
∀[A:Type]. (discrete-cube(A) ∈ CubicalSet)
Proof
Definitions occuring in Statement : 
discrete-cube: discrete-cube(A)
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discrete-cube: discrete-cube(A)
, 
cubical-set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
id-morph_wf, 
equal-wf-T-base, 
compose_wf, 
name-comp_wf, 
equal_wf, 
all_wf, 
name-morph_wf, 
top_wf, 
coordinate_name_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
dependent_pairEquality, 
lambdaEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
lambdaFormation, 
functionExtensionality, 
independent_pairFormation, 
because_Cache, 
productElimination, 
productEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  (discrete-cube(A)  \mmember{}  CubicalSet)
Date html generated:
2016_06_16-PM-05_38_24
Last ObjectModification:
2016_01_18-PM-04_56_56
Theory : cubical!sets
Home
Index