Nuprl Lemma : poset-cat-arrow_subtype

[I,J:Cname List].
  ∀[x,y:cat-ob(poset-cat(I))].  ((cat-arrow(poset-cat(I)) y) ⊆(cat-arrow(poset-cat(J)) y)) 
  supposing nameset(J) ⊆nameset(I)


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] apply: a
Definitions unfolded in proof :  poset-cat: poset-cat(J) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] name-morph: name-morph(I;J) prop: so_apply: x[s]
Lemmas referenced :  subtype_rel_dep_function nameset_wf assert_wf le_int_wf subtype_rel_self all_wf name-morph_wf nil_wf coordinate_name_wf subtype_rel_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution hypothesisEquality applyEquality lemma_by_obid isectElimination thin hypothesis setElimination rename because_Cache independent_isectElimination lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:Cname  List].
    \mforall{}[x,y:cat-ob(poset-cat(I))].    ((cat-arrow(poset-cat(I))  x  y)  \msubseteq{}r  (cat-arrow(poset-cat(J))  x  y)) 
    supposing  nameset(J)  \msubseteq{}r  nameset(I)



Date html generated: 2016_06_16-PM-06_52_17
Last ObjectModification: 2015_12_28-PM-04_23_00

Theory : cubical!sets


Home Index