Nuprl Lemma : poset-cat-arrow_subtype
∀[I,J:Cname List].
  ∀[x,y:cat-ob(poset-cat(I))].  ((cat-arrow(poset-cat(I)) x y) ⊆r (cat-arrow(poset-cat(J)) x y)) 
  supposing nameset(J) ⊆r nameset(I)
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
Definitions unfolded in proof : 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
name-morph: name-morph(I;J)
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_dep_function, 
nameset_wf, 
assert_wf, 
le_int_wf, 
subtype_rel_self, 
all_wf, 
name-morph_wf, 
nil_wf, 
coordinate_name_wf, 
subtype_rel_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:Cname  List].
    \mforall{}[x,y:cat-ob(poset-cat(I))].    ((cat-arrow(poset-cat(I))  x  y)  \msubseteq{}r  (cat-arrow(poset-cat(J))  x  y)) 
    supposing  nameset(J)  \msubseteq{}r  nameset(I)
Date html generated:
2016_06_16-PM-06_52_17
Last ObjectModification:
2015_12_28-PM-04_23_00
Theory : cubical!sets
Home
Index