Nuprl Lemma : poset-functor-id

[I:Cname List]. ∀[f:name-morph(I;I)].
  poset-functor(I;I;f) 1 ∈ Functor(poset-cat(I);poset-cat(I)) supposing 1 ∈ name-morph(I;I)


Proof




Definitions occuring in Statement :  poset-functor: poset-functor(J;K;f) poset-cat: poset-cat(J) id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname id_functor: 1 cat-functor: Functor(C1;C2) list: List uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf cat-functor_wf poset-cat_wf poset-id-functor id_functor_wf iff_weakening_equal equal-wf-T-base poset-functor_wf name-morph_wf id-morph_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis thin applyEquality lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement applyLambdaEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[f:name-morph(I;I)].    poset-functor(I;I;f)  =  1  supposing  f  =  1



Date html generated: 2017_10_05-AM-10_29_19
Last ObjectModification: 2017_07_28-AM-11_24_11

Theory : cubical!sets


Home Index