Nuprl Lemma : poset-id-functor

[I:Cname List]. (poset-functor(I;I;1) 1 ∈ Functor(poset-cat(I);poset-cat(I)))


Proof




Definitions occuring in Statement :  poset-functor: poset-functor(J;K;f) poset-cat: poset-cat(J) id-morph: 1 coordinate_name: Cname id_functor: 1 cat-functor: Functor(C1;C2) list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] id_functor: 1 poset-functor: poset-functor(J;K;f) poset-cat: poset-cat(J) top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) name-morph: name-morph(I;J) uimplies: supposing a implies:  Q prop: assert: b false: False or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff true: True rev_uimplies: rev_uimplies(P;Q) id-morph: 1 name-comp: (f g) compose: g uext: uext(g)
Lemmas referenced :  list_wf coordinate_name_wf poset-cat_wf poset-functor_wf id-morph_wf id_functor_wf cat_ob_pair_lemma ob_pair_lemma ob_mk_functor_lemma name-comp-id-left nil_wf subtype_rel_self name-morph_wf cat-ob_wf cat_arrow_triple_lemma arrow_pair_lemma arrow_mk_functor_lemma cat-arrow_wf equal-functors nameset_wf assert_wf le_int_wf extd-nameset_subtype_int equal_wf bnot_wf not_wf le_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_le_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot assert_witness name-comp_wf isname-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality because_Cache independent_isectElimination functionExtensionality rename setElimination equalityTransitivity equalitySymmetry independent_functionElimination unionElimination instantiate cumulativity productElimination independent_pairFormation impliesFunctionality equalityElimination

Latex:
\mforall{}[I:Cname  List].  (poset-functor(I;I;1)  =  1)



Date html generated: 2017_10_05-AM-10_29_13
Last ObjectModification: 2017_07_28-AM-11_24_07

Theory : cubical!sets


Home Index