Nuprl Lemma : poset-functor_wf
∀[J,K:Cname List]. ∀[f:name-morph(J;K)].  (poset-functor(J;K;f) ∈ Functor(poset-cat(K);poset-cat(J)))
Proof
Definitions occuring in Statement : 
poset-functor: poset-functor(J;K;f), 
poset-cat: poset-cat(J), 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
cat-functor: Functor(C1;C2), 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cat-functor: Functor(C1;C2), 
poset-functor: poset-functor(J;K;f), 
poset-cat: poset-cat(J), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
name-morph: name-morph(I;J), 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
cat-comp: cat-comp(C), 
cat-id: cat-id(C), 
cand: A c∧ B, 
name-comp: (f o g), 
compose: f o g, 
uext: uext(g), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
nameset: nameset(L), 
sq_stable: SqStable(P), 
squash: ↓T, 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
ge: i ≥ j 
Lemmas referenced : 
name-comp_wf, 
nil_wf, 
coordinate_name_wf, 
name-morph_wf, 
assert_witness, 
le_int_wf, 
assert_of_le_int, 
nameset_wf, 
all_wf, 
assert_wf, 
extd-nameset_subtype_int, 
le_reflexive, 
cat-ob_wf, 
poset-cat_wf, 
equal_wf, 
cat-arrow_wf, 
cat-id_wf, 
cat-comp_wf, 
list_wf, 
isname_wf, 
bool_wf, 
eqtt_to_assert, 
assert-isname, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not-assert-isname, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_functionality, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_pairEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
functionEquality, 
functionExtensionality, 
lambdaFormation, 
dependent_functionElimination, 
independent_pairFormation, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
natural_numberEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[J,K:Cname  List].  \mforall{}[f:name-morph(J;K)].
    (poset-functor(J;K;f)  \mmember{}  Functor(poset-cat(K);poset-cat(J)))
Date html generated:
2017_10_05-AM-10_29_00
Last ObjectModification:
2017_07_28-AM-11_23_58
Theory : cubical!sets
Home
Index