Nuprl Lemma : unit-cube-map-id

I:Cname List. (unit-cube-map(1) 1(unit-cube(I)) ∈ unit-cube(I) ⟶ unit-cube(I))


Proof




Definitions occuring in Statement :  unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) csm-id: 1(X) cube-set-map: A ⟶ B id-morph: 1 coordinate_name: Cname list: List all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cube-set-map: A ⟶ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a nat-trans: nat-trans(C;D;F;G) name-cat: NameCat cat-ob: cat-ob(C) pi1: fst(t) unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) csm-id: 1(X) top: Top type-cat: TypeCat cat-id: cat-id(C) cat-arrow: cat-arrow(C) pi2: snd(t) squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-set-is-functor list_wf coordinate_name_wf name-cat_wf type-cat_wf unit-cube_wf subtype_rel_weakening cubical-set_wf cat-functor_wf csm-id_wf unit-cube-map_wf id-morph_wf cube-set-map_wf nat-trans-equal cat-ob_wf ob_pair_lemma ident_trans_ap_lemma equal_wf squash_wf true_wf name-morph_wf name-comp-id-left iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid equalitySymmetry hypothesis sqequalHypSubstitution isectElimination thin instantiate hypothesisEquality applyEquality independent_isectElimination sqequalRule lambdaEquality setElimination rename functionExtensionality dependent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}I:Cname  List.  (unit-cube-map(1)  =  1(unit-cube(I)))



Date html generated: 2017_10_05-AM-10_12_13
Last ObjectModification: 2017_07_28-AM-11_18_09

Theory : cubical!sets


Home Index