Nuprl Lemma : apply-fl-morph-id

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))].  ((phi)<1> phi ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  fl-morph: <f> face_lattice: face_lattice(I) nh-id: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True squash: T all: x:A. B[x] guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf squash_wf true_wf fl-morph-id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].    ((phi)ə>  =  phi)



Date html generated: 2017_10_05-AM-01_13_26
Last ObjectModification: 2017_07_28-AM-09_30_56

Theory : cubical!type!theory


Home Index