Nuprl Lemma : equiv_term_wf

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
[c:{G, phi ⊢ _:(Path_A app(equiv-fun(f); t))}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cT:G +⊢ Compositon(T)].
  (equiv [phi ⊢→ (t,c)] a ∈ {G ⊢ _:Fiber(equiv-fun(f);a)[phi |⟶ fiber-point(t;c)]})


Proof




Definitions occuring in Statement :  equiv_term: equiv [phi ⊢→ (t,c)] a composition-structure: Gamma ⊢ Compositon(A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) path-type: (Path_A b) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv_term: equiv [phi ⊢→ (t,c)] a composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] guard: {T}
Lemmas referenced :  cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset equiv-fun_wf subset-cubical-term context-subset-is-subset cubical-fun_wf equiv-term_wf cubical-type-cumulativity2 fiber-comp_wf subtype_rel_self composition-structure_wf istype-cubical-term path-type_wf cubical_set_cumulativity-i-j cubical-equiv_wf cubical-type_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule Error :memTop,  applyEquality independent_isectElimination instantiate universeIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
\mforall{}[cT:G  +\mvdash{}  Compositon(T)].
    (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,c)]  a  \mmember{}  \{G  \mvdash{}  \_:Fiber(equiv-fun(f);a)[phi  |{}\mrightarrow{}  fiber-point(t;c)]\})



Date html generated: 2020_05_20-PM-05_36_19
Last ObjectModification: 2020_04_19-AM-00_02_10

Theory : cubical!type!theory


Home Index