Nuprl Lemma : equiv-term_wf
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
∀[c:{G, phi ⊢ _:(Path_A a app(equiv-fun(f); t))}]. ∀[cF:G ⊢ Compositon(Fiber(equiv-fun(f);a))].
  (equiv f [phi ⊢→ (t,  c)] a ∈ {G ⊢ _:Fiber(equiv-fun(f);a)[phi |⟶ fiber-point(t;c)]})
Proof
Definitions occuring in Statement : 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
fiber-point: fiber-point(t;c)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-app: app(w; u)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
equiv-term: equiv f [phi ⊢→ (t,  c)] a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
let: let, 
composition-structure: Gamma ⊢ Compositon(A)
, 
guard: {T}
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
cubical-path-app: pth @ r
, 
cubicalpath-app: pth @ r
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
cubical-app_wf_fun, 
context-subset_wf, 
thin-context-subset, 
cubical-fun-subset, 
equiv-fun_wf, 
subset-cubical-term, 
context-subset-is-subset, 
cubical-fun_wf, 
equiv-contr_wf, 
cubical-fiber_wf, 
fiber-subset, 
cubical-term-eqcd, 
fiber-point_wf, 
context-subset-term-subtype, 
comp_term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
composition-structure_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-equiv_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
contr-center_wf, 
contr-path_wf, 
contractible-type-subset, 
contractible-type_wf, 
cubical-path-app_wf, 
csm-ap-term_wf, 
csm-path-type, 
cc-snd_wf, 
cubical-path-app-0, 
cubical-path-ap-id-adjoin, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-id-type, 
subset-cubical-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
csm-id_wf, 
constrained-cubical-term_wf, 
cubical-path-app-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
Error :memTop, 
applyEquality, 
independent_isectElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
instantiate, 
setElimination, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].
\mforall{}[cF:G  \mvdash{}  Compositon(Fiber(equiv-fun(f);a))].
    (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  \mmember{}  \{G  \mvdash{}  \_:Fiber(equiv-fun(f);a)[phi  |{}\mrightarrow{}  fiber-point(t;c)]\})
Date html generated:
2020_05_20-PM-05_35_07
Last ObjectModification:
2020_04_18-PM-11_01_48
Theory : cubical!type!theory
Home
Index