Nuprl Lemma : fill-type-down_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (fill-type-down(Gamma;A;cA) ∈ {Gamma.𝕀 ⊢ _:(((A)[1(𝕀)])p ⟶ A)})


Proof




Definitions occuring in Statement :  fill-type-down: fill-type-down(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B rev-type-line: (A)- fill-type-down: fill-type-down(Gamma;A;cA) squash: T prop: true: True all: x:A. B[x] interval-rev: 1-(r) cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] interval-0: 0(𝕀) cubical-term-at: u(a) csm-adjoin: (s;u) csm-ap: (s)x csm-id: 1(X) pi1: fst(t) pi2: snd(t) implies:  Q
Lemmas referenced :  csm-adjoin_wf interval-type_wf cc-fst_wf csm-interval-type interval-rev_wf cube-context-adjoin_wf cc-snd_wf csm-composition_wf cubical_set_cumulativity-i-j subtype_rel_self composition-op_wf rev-type-line_wf cubical-type-cumulativity2 fill-type-up_wf cubical-fun_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 cubical-type_wf cubical_set_wf cubical-term_wf squash_wf true_wf csm-ap-term_wf csm-cubical-fun dma-neg-dM0 csm-id-adjoin_wf-interval-1 rev-rev-type-line
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis instantiate sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry applyEquality universeIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement dependent_functionElimination setElimination rename productElimination inhabitedIsType lambdaFormation_alt equalityIstype independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (fill-type-down(Gamma;A;cA)  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:(((A)[1(\mBbbI{})])p  {}\mrightarrow{}  A)\})



Date html generated: 2020_05_20-PM-04_55_22
Last ObjectModification: 2020_04_13-PM-02_48_50

Theory : cubical!type!theory


Home Index