Nuprl Lemma : filling_term_wf
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma.𝕀, (phi)p ⊢ _:A}].
∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}].
  (fill cA [phi ⊢→ u] a0 ∈ {Gamma.𝕀 ⊢ _:A[(phi)p |⟶ u]})
Proof
Definitions occuring in Statement : 
filling_term: fill cA [phi ⊢→ u] a0
, 
composition-op: Gamma ⊢ CompOp(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
filling_term: fill cA [phi ⊢→ u] a0
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
fill_term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-id-adjoin_wf-interval-0, 
partial-term-0_wf, 
cubical-term_wf, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
thin-context-subset, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
Error :memTop
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].
    (fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:A[(phi)p  |{}\mrightarrow{}  u]\})
Date html generated:
2020_05_20-PM-04_53_33
Last ObjectModification:
2020_04_10-AM-11_32_09
Theory : cubical!type!theory
Home
Index