Nuprl Lemma : filling_term_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma.𝕀(phi)p ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}].
  (fill cA [phi ⊢→ u] a0 ∈ {Gamma.𝕀 ⊢ _:A[(phi)p |⟶ u]})


Proof




Definitions occuring in Statement :  filling_term: fill cA [phi ⊢→ u] a0 composition-op: Gamma ⊢ CompOp(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T filling_term: fill cA [phi ⊢→ u] a0 subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  fill_term_wf cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-id-adjoin_wf-interval-0 partial-term-0_wf cubical-term_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf thin-context-subset composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].
    (fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma.\mBbbI{}  \mvdash{}  \_:A[(phi)p  |{}\mrightarrow{}  u]\})



Date html generated: 2020_05_20-PM-04_53_33
Last ObjectModification: 2020_04_10-AM-11_32_09

Theory : cubical!type!theory


Home Index