Nuprl Lemma : fl-deq_wf
∀[I:fset(ℕ)]. (Deq(F(I)) ∈ EqDecider(Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
fl-deq: Deq(F(I))
, 
face_lattice: face_lattice(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl-deq: Deq(F(I))
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset_wf, 
nat_wf, 
fl-eq_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
assert-fl-eq, 
assert_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  (Deq(F(I))  \mmember{}  EqDecider(Point(face\_lattice(I))))
Date html generated:
2016_05_18-PM-00_11_25
Last ObjectModification:
2015_12_28-PM-03_02_20
Theory : cubical!type!theory
Home
Index