Nuprl Lemma : fl-deq_wf

[I:fset(ℕ)]. (Deq(F(I)) ∈ EqDecider(Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  fl-deq: Deq(F(I)) face_lattice: face_lattice(I) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-deq: Deq(F(I)) deq: EqDecider(T) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q
Lemmas referenced :  fset_wf nat_wf fl-eq_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf assert-fl-eq assert_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin dependent_set_memberEquality lambdaEquality hypothesisEquality applyEquality instantiate productEquality cumulativity universeEquality because_Cache independent_isectElimination lambdaFormation independent_pairFormation productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  (Deq(F(I))  \mmember{}  EqDecider(Point(face\_lattice(I))))



Date html generated: 2016_05_18-PM-00_11_25
Last ObjectModification: 2015_12_28-PM-03_02_20

Theory : cubical!type!theory


Home Index