Nuprl Lemma : nc-e'-p2

[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[r:Point(dM(I))]. ∀[i:ℕ]. ∀[j:{j:ℕ| ¬j ∈ J} ].  (f,i=j ⋅ (j/f(r)) (i/r) ⋅ f ∈ J ⟶ I+i)


Proof




Definitions occuring in Statement :  interval-presheaf: 𝕀 cube-set-restriction: f(s) nc-e': g,i=j nc-p: (i/z) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T}
Lemmas referenced :  fset_wf names-hom_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf fset-member_wf not_wf nat_wf interval-presheaf-restriction nc-e'-p
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalitySymmetry sqequalRule isect_memberEquality voidElimination voidEquality setEquality applyEquality intEquality independent_isectElimination because_Cache lambdaEquality natural_numberEquality instantiate productEquality cumulativity universeEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[r:Point(dM(I))].  \mforall{}[i:\mBbbN{}].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (f,i=j  \mcdot{}  (j/f(r))  =  (i/r)  \mcdot{}  f)



Date html generated: 2016_05_18-PM-00_06_47
Last ObjectModification: 2016_02_08-PM-05_39_49

Theory : cubical!type!theory


Home Index