Nuprl Lemma : nc-e'-p2
∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[r:Point(dM(I))]. ∀[i:ℕ]. ∀[j:{j:ℕ| ¬j ∈ J} ].  (f,i=j ⋅ (j/f(r)) = (i/r) ⋅ f ∈ J ⟶ I+i)
Proof
Definitions occuring in Statement : 
interval-presheaf: 𝕀
, 
cube-set-restriction: f(s)
, 
nc-e': g,i=j
, 
nc-p: (i/z)
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
DeMorgan-algebra: DeMorganAlgebra
, 
and: P ∧ Q
, 
guard: {T}
Lemmas referenced : 
fset_wf, 
names-hom_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
strong-subtype-self, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
fset-member_wf, 
not_wf, 
nat_wf, 
interval-presheaf-restriction, 
nc-e'-p
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalitySymmetry, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[r:Point(dM(I))].  \mforall{}[i:\mBbbN{}].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (f,i=j  \mcdot{}  (j/f(r))  =  (i/r)  \mcdot{}  f)
Date html generated:
2016_05_18-PM-00_06_47
Last ObjectModification:
2016_02_08-PM-05_39_49
Theory : cubical!type!theory
Home
Index