Nuprl Lemma : transEquiv-trans-sq

[G,A,p,I,a,J,f,u:Top].
  (transEquivFun(p) let x,cA I+new-name(I) 1(s(1(a))) I+new-name(I) 1 <new-name(I)> 
                                in cA new-name(J) 
                                   1 ⋅ cube+(I;new-name(I)) J+new-name(J) <1 ⋅ f ⋅ s, 1 ∧ <new-name(J)>> ⋅ 
                                   (0)<1 ⋅ f> ∨ 
                                   I@1,a@0. (if ((0)<1 ⋅ f ⋅ s ⋅ a@0>==1) then (fst(⋅)) I@1 else λu.u fi  
                                               ((snd((A I@1+new-name(I@1) 
                                                      cube+(I;new-name(I)) I@1+new-name(I@1) 
                                                      <1 ⋅ f ⋅ s ⋅ a@0 ⋅ s
                                                      1 ∧ ¬(dM-lift(I@1+new-name(I@1);I@1;s) 
                                                              ¬(dM-lift(I@1;J+new-name(J);a@0) 
                                                                <new-name(J)>) ∧ <new-name(I@1)>)
                                                      >(1(1(1(s(1(a))))))))) 
                                                I@1 
                                                new-name(I@1) 
                                                
                                                0 ∨ dM-to-FL(I@1;¬(dM-lift(I@1;J+new-name(J);a@0) <new-name(J)>))) 
                                                I@0,a@1. ((((u s) a@0) s) a@1)) 
                                                ((u s) a@0)))) 
                                   ((snd((A J+new-name(J) 
                                          cube+(I;new-name(I)) J+new-name(J) <1 ⋅ f ⋅ s, 1 ∧ ¬(1 ∧ <new-name(J)>)>(1(1(1\000C(s(1(a))))))))) 
                                    
                                    new-name(J) 
                                    
                                    
                                    I@1,a@0. ((u s) a@0)) 
                                    u))


Proof




Definitions occuring in Statement :  transEquiv-trans: transEquivFun(p) csm-m: m cube+: cube+(I;i) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cubical-type-ap-morph: (u f) cubical-type-at: A(a) fl-morph: <f> dM-to-FL: dM-to-FL(I;z) fl-eq: (x==y) face_lattice: face_lattice(I) cube-set-restriction: f(s) nc-s: s new-name: new-name(I) add-name: I+i nh-comp: g ⋅ f nh-id: 1 dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM1: 1 dM_inc: <x> dM: dM(I) names-deq: NamesDeq names: names(I) ifthenelse: if then else fi  it: uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) apply: a lambda: λx.A[x] spread: spread def pair: <a, b> product: x:A × B[x] sqequal: t dma-neg: ¬(x) dm-neg: ¬(x) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b
Definitions unfolded in proof :  uall: [x:A]. B[x] transEquiv-trans: transEquivFun(p) transEquiv: transEquiv{i:l}(G;A;p) equiv-fun: equiv-fun(f) cubical-subst: cubical-subst(G;f;pth;x) cubical-fst: p.1 cubical-app: app(w; u) cubical-id-equiv: IdEquiv(X;T) equiv-witness: equiv-witness(f;cntr) cubical-pair: cubical-pair(u;v) path-trans: PathTransport(p) univ-trans: univ-trans(G;T) transprt-fun: transprt-fun(Gamma;A;cA) cubical-lambda: b) universe-decode: decode(t) cube-context-adjoin: X.A map-path: map-path(G;f;pth) path-eta: path-eta(pth) universe-comp-op: compOp(t) all: x:A. B[x] member: t ∈ T cc-snd: q cc-fst: p csm-ap-term: (t)s cubicalpath-app: pth r cubical-lam: cubical-lam(X;b) term-to-path: <>(a) csm-ap-type: (AF)s csm-comp-structure: (cA)tau transprt: transprt(G;cA;a0) comp-op-to-comp-fun: cop-to-cfun(cA) csm-id-adjoin: [u] cubical-id-fun: cubical-id-fun(X) cc-adjoin-cube: (v;u) csm-ap: (s)x csm+: tau+ csm-comp: F pi1: fst(t) pi2: snd(t) csm-id: 1(X) csm-adjoin: (s;u) compose: g cubical-term-at: u(a) face-0: 0(𝔽) equivTerm: equivTerm(G;A;B) csm-composition: (comp)sigma composition-term: comp cA [phi ⊢→ u] a0 comp_term: comp cA [phi ⊢→ u] a0 equiv-comp: equiv-comp(H;A;E;cA;cE) universe-encode: encode(T;cT) discrete-cubical-term: discr(t) context-map: <rho> comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp) canonical-section: canonical-section(Gamma;A;I;rho;a) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] equiv_comp_apply: equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d) cubical-type-ap-morph: (u f) cubical-universe: c𝕌 closed-type-to-type: closed-type-to-type(T) closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] uimplies: supposing a label: ...$L... t cube-set-restriction: f(s) csm-m: m formal-cube: formal-cube(I) cubical-equiv: Equiv(T;A) cubical-fun: (A ⟶ B) cubical-sigma: Σ B subset-iota: iota interval-1: 1(𝕀) dma-neg: ¬(x) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM0: 0 lattice-0: 0 bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) empty-fset: {} nil: [] it: opposite-lattice: opposite-lattice(L) lattice-1: 1 fset-singleton: {x} cons: [a b] dM1: 1 fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
Lemmas referenced :  I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma arrow_pair_lemma equiv_comp-apply-sq istype-top lifting-strict-spread strict4-spread strict4-apply interval-type-ap-morph lifting-strict-ifthenelse face-type-ap-morph dM-lift-1-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isectElimination hypothesisEquality because_Cache inhabitedIsType baseClosed independent_isectElimination lambdaFormation_alt

Latex:
\mforall{}[G,A,p,I,a,J,f,u:Top].
    (transEquivFun(p)  I  a  J  f  u 
    \msim{}  let  x,cA  =  p  I+new-name(I)  1(s(1(a)))  I+new-name(I)  1  <new-name(I)> 
        in  cA  J  new-name(J)  1  \mcdot{}  cube+(I;new-name(I))  J+new-name(J)  ə  \mcdot{}  f  \mcdot{}  s,  1  \mwedge{}  <new-name(J)>>  \mcdot{}  1  (0\000C)ə  \mcdot{}  f>  \mvee{}  0 
              (\mlambda{}I@1,a@0.  (if  ((0)ə  \mcdot{}  f  \mcdot{}  s  \mcdot{}  a@0>==1)  then  (fst(\mcdot{}))  I@1  1  else  \mlambda{}u.u  fi   
                                      ((snd((A  I@1+new-name(I@1) 
                                                    cube+(I;new-name(I))  I@1+new-name(I@1) 
                                                    ə  \mcdot{}  f  \mcdot{}  s  \mcdot{}  a@0  \mcdot{}  s
                                                    ,  1  \mwedge{}  \mneg{}(dM-lift(I@1+new-name(I@1);I@1;s) 
                                                                    \mneg{}(dM-lift(I@1;J+new-name(J);a@0)  <new-name(J)>)  \mwedge{}  <new-name(I@1)>)
                                                    >(1(1(1(s(1(a))))))))) 
                                        I@1 
                                        new-name(I@1) 
                                        1 
                                        0  \mvee{}  dM-to-FL(I@1;\mneg{}(\mneg{}(dM-lift(I@1;J+new-name(J);a@0)  <new-name(J)>))) 
                                        (\mlambda{}I@0,a@1.  ((((u  1  s)  1  a@0)  1  s)  1  a@1)) 
                                        ((u  1  s)  1  a@0)))) 
              ((snd((A  J+new-name(J) 
                            cube+(I;new-name(I))  J+new-name(J)  ə  \mcdot{}  f  \mcdot{}  s,  1  \mwedge{}  \mneg{}(1  \mwedge{}  <new-name(J)>)>(1(1(1(s(1(a))\000C))))))) 
                J 
                new-name(J) 
                1 
                0 
                (\mlambda{}I@1,a@0.  ((u  1  s)  1  a@0)) 
                u))



Date html generated: 2020_05_20-PM-07_35_36
Last ObjectModification: 2020_04_25-PM-10_42_10

Theory : cubical!type!theory


Home Index