Nuprl Lemma : eu-colinear-trivial

e:EuclideanPlane. ∀a,b:Point.  ((¬(a b ∈ Point))  (Colinear(a;b;b) ∧ Colinear(b;a;b)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eu-between_wf member_wf eu-colinear-def euclidean-plane_wf not_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma eu-colinear-is-colinear-set eu-point_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation hypothesis sqequalHypSubstitution independent_functionElimination thin equalitySymmetry voidElimination lemma_by_obid isectElimination setElimination rename hypothesisEquality dependent_functionElimination because_Cache sqequalRule isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality introduction imageMemberEquality baseClosed productElimination productEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    ((\mneg{}(a  =  b))  {}\mRightarrow{}  (Colinear(a;b;b)  \mwedge{}  Colinear(b;a;b)))



Date html generated: 2016_05_18-AM-06_44_28
Last ObjectModification: 2016_01_16-PM-10_30_16

Theory : euclidean!geometry


Home Index