Nuprl Lemma : test-prove-distinct

e:EuclideanPlane. ∀A,B,C,X,Y,Z,W,U,V:Point.
  ((Colinear(A;B;X) ∨ A-X-B ∨ B-X-A)
   (A_B_C ∨ C_B_A)
   (Y_C_A ∨ A_C_Y)
   (ZW=AY ∨ ZW=YA)
   ZW=UV
   (U V ∈ Point)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane or: P ∨ Q uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  equal_wf eu-point_wf eu-congruent_wf or_wf eu-between-eq_wf eu-colinear_wf eu-between_wf euclidean-plane_wf eu-congruence-identity eu-congruence-identity-sym eu-between-eq-same eu-colinear-def eu-between-same2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination introduction extract_by_obid isectElimination setElimination rename hypothesisEquality because_Cache unionElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  sqequalRule independent_isectElimination dependent_functionElimination productElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,X,Y,Z,W,U,V:Point.
    ((Colinear(A;B;X)  \mvee{}  A-X-B  \mvee{}  B-X-A)
    {}\mRightarrow{}  (A\_B\_C  \mvee{}  C\_B\_A)
    {}\mRightarrow{}  (Y\_C\_A  \mvee{}  A\_C\_Y)
    {}\mRightarrow{}  (ZW=AY  \mvee{}  ZW=YA)
    {}\mRightarrow{}  ZW=UV
    {}\mRightarrow{}  (\mneg{}(U  =  V)))



Date html generated: 2016_10_26-AM-07_44_07
Last ObjectModification: 2016_07_12-AM-08_11_51

Theory : euclidean!geometry


Home Index