Nuprl Lemma : test-prove-distinct
∀e:EuclideanPlane. ∀A,B,C,X,Y,Z,W,U,V:Point.
  ((Colinear(A;B;X) ∨ A-X-B ∨ B-X-A)
  
⇒ (A_B_C ∨ C_B_A)
  
⇒ (Y_C_A ∨ A_C_Y)
  
⇒ (ZW=AY ∨ ZW=YA)
  
⇒ ZW=UV
  
⇒ (¬(U = V ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-colinear: Colinear(a;b;c)
, 
eu-between: a-b-c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
equal_wf, 
eu-point_wf, 
eu-congruent_wf, 
or_wf, 
eu-between-eq_wf, 
eu-colinear_wf, 
eu-between_wf, 
euclidean-plane_wf, 
eu-congruence-identity, 
eu-congruence-identity-sym, 
eu-between-eq-same, 
eu-colinear-def, 
eu-between-same2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,X,Y,Z,W,U,V:Point.
    ((Colinear(A;B;X)  \mvee{}  A-X-B  \mvee{}  B-X-A)
    {}\mRightarrow{}  (A\_B\_C  \mvee{}  C\_B\_A)
    {}\mRightarrow{}  (Y\_C\_A  \mvee{}  A\_C\_Y)
    {}\mRightarrow{}  (ZW=AY  \mvee{}  ZW=YA)
    {}\mRightarrow{}  ZW=UV
    {}\mRightarrow{}  (\mneg{}(U  =  V)))
Date html generated:
2016_10_26-AM-07_44_07
Last ObjectModification:
2016_07_12-AM-08_11_51
Theory : euclidean!geometry
Home
Index