Nuprl Lemma : Euclid-drop-perp-ext

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| b} . ∀c:{c:Point| ab} .  (∃p:Point [(Colinear(a;b;p) ∧ ab  ⊥pc)])


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-lsep: bc geo-sep: b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T record-select: r.x geo-CCL: CCL(a;b;c;d) geo-CCR: geo-CCR(g;a;b;c;d) ifthenelse: if then else fi  midpoint-construction: Mid(a;b) let: let Euclid-drop-perp Euclid-drop-perp-1 Euclid-drop-perp-0 sq_stable__colinear sq_stable__from_stable stable__geo-perp-in colinear-equidistant-points-exist geo-CC-2 geo-congruent-refl geo-sep-sym geo-sep-or stable__and stable__all symmetric-point-construction use-SC sq_stable__geo-sep geo-between-implies-colinear geo-congruent-sep geo-congruent-symmetry geo-congruent-iff-length sq_stable__and sq_stable__geo-congruent sq_stable__geo-between sq_stable__all basic-geo-sep-sym sq_stable__geo-axioms geo-ge-sep geo-seg-congruent-iff-length sq_stable-geo-axioms-if sq_stable__geo-gt-prim sq_stable__geo-lsep any: any x uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c:\{c:Point|  c  \#  ab\}  .
    (\mexists{}p:Point  [(Colinear(a;b;p)  \mwedge{}  ab    \mbot{}p  pc)])



Date html generated: 2020_05_20-AM-10_04_33
Last ObjectModification: 2020_01_27-PM-07_08_00

Theory : euclidean!plane!geometry


Home Index