Nuprl Lemma : colinear-equidistant-points-exist
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀c:Point.
  ∃u,v:Point. (Colinear(a;b;u) ∧ Colinear(a;b;v) ∧ u ≠ v ∧ cu ≅ cv)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
basic-geometry: BasicGeometry
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
geo-midpoint: a=m=b
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
geo-sep-or, 
sq_stable__geo-sep, 
geo-sep-sym, 
symmetric-point-construction, 
use-SC, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-congruent-iff-length, 
geo-colinear_wf, 
geo-sep_wf, 
geo-congruent_wf, 
exists_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
isectElimination, 
independent_isectElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
applyEquality, 
lambdaEquality, 
instantiate
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}c:Point.
    \mexists{}u,v:Point.  (Colinear(a;b;u)  \mwedge{}  Colinear(a;b;v)  \mwedge{}  u  \mneq{}  v  \mwedge{}  cu  \mcong{}  cv)
Date html generated:
2018_05_22-PM-00_08_29
Last ObjectModification:
2018_04_04-PM-05_44_13
Theory : euclidean!plane!geometry
Home
Index