Nuprl Lemma : adjacent-right-angles

e:BasicGeometry. ∀a,b,c,a':Point.  (b ≠  Rabc  Ra'bc  Colinear(a;b;a'))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry right-angle: Rabc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a right-angle: Rabc geo-midpoint: a=m=b and: P ∧ Q basic-geometry: BasicGeometry uiff: uiff(P;Q)
Lemmas referenced :  symmetric-point-construction geo-midpoint-symmetry right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-point_wf upper-dimension-axiom geo-congruent-iff-length geo-length-flip geo-between-sep geo-sep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination rename because_Cache isectElimination applyEquality instantiate independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a':Point.    (b  \mneq{}  c  {}\mRightarrow{}  Rabc  {}\mRightarrow{}  Ra'bc  {}\mRightarrow{}  Colinear(a;b;a'))



Date html generated: 2018_05_22-PM-00_02_42
Last ObjectModification: 2018_04_02-AM-11_09_13

Theory : euclidean!plane!geometry


Home Index