Nuprl Lemma : eu-pp-prim_wf

[eu:EuclideanParPlane]. (pp(eu) ∈ ProjGeomPrimitives)


Proof




Definitions occuring in Statement :  eu-pp-prim: pp(eu) euclidean-parallel-plane: EuclideanParPlane pgeo-primitives: ProjGeomPrimitives uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B eu-pp-prim: pp(eu) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  pp-sep_wf unit_wf2 geo-line_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf euclidean-parallel-plane_wf subtype_rel_transitivity euclidean-planes-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf mk-pgeo-prim_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality lambdaEquality because_Cache dependent_functionElimination sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality unionEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[eu:EuclideanParPlane].  (pp(eu)  \mmember{}  ProjGeomPrimitives)



Date html generated: 2018_05_22-PM-01_16_55
Last ObjectModification: 2018_05_21-PM-03_40_41

Theory : euclidean!plane!geometry


Home Index