Nuprl Lemma : eu-pp-prim_wf
∀[eu:EuclideanParPlane]. (pp(eu) ∈ ProjGeomPrimitives)
Proof
Definitions occuring in Statement : 
eu-pp-prim: pp(eu)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
pgeo-primitives: ProjGeomPrimitives
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
eu-pp-prim: pp(eu)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
pp-sep_wf, 
unit_wf2, 
geo-line_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
mk-pgeo-prim_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
unionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[eu:EuclideanParPlane].  (pp(eu)  \mmember{}  ProjGeomPrimitives)
Date html generated:
2018_05_22-PM-01_16_55
Last ObjectModification:
2018_05_21-PM-03_40_41
Theory : euclidean!plane!geometry
Home
Index