Nuprl Lemma : pp-sep_wf
∀[eu:EuclideanParPlane]. ∀[p:Point + Line]. ∀[l:Line?].  (pp-sep(eu;p;l) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pp-sep: pp-sep(eu;p;l)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-line: Line
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
unit: Unit
, 
member: t ∈ T
, 
union: left + right
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
subtype_rel: A ⊆r B
, 
pp-sep: pp-sep(eu;p;l)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-point_wf, 
unit_wf2, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-line_wf, 
false_wf, 
geoline-subtype1, 
geo-intersect_wf, 
true_wf, 
geo-plsep_wf
Rules used in proof : 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
dependent_functionElimination, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
hypothesis, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
thin, 
unionElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[eu:EuclideanParPlane].  \mforall{}[p:Point  +  Line].  \mforall{}[l:Line?].    (pp-sep(eu;p;l)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_13_07
Last ObjectModification:
2018_05_21-AM-09_51_16
Theory : euclidean!plane!geometry
Home
Index