Nuprl Lemma : mk-pgeo-prim_wf
∀[P,L:Type]. ∀[S:P ⟶ L ⟶ ℙ].  (points=P lines=L plsep=S ∈ ProjGeomPrimitives)
Proof
Definitions occuring in Statement : 
mk-pgeo-prim: mk-pgeo-prim, 
pgeo-primitives: ProjGeomPrimitives
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-pgeo-prim: mk-pgeo-prim, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
record+: record+, 
record-update: r[x := v]
, 
record: record(x.T[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
record-select: r.x
, 
top: Top
, 
eq_atom: x =a y
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
atom_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependentIntersection_memberEquality, 
because_Cache, 
functionExtensionality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[P,L:Type].  \mforall{}[S:P  {}\mrightarrow{}  L  {}\mrightarrow{}  \mBbbP{}].    (points=P  lines=L  plsep=S  \mmember{}  ProjGeomPrimitives)
Date html generated:
2018_05_22-PM-00_22_43
Last ObjectModification:
2018_03_30-PM-09_17_26
Theory : euclidean!plane!geometry
Home
Index