Nuprl Lemma : mk-pgeo-prim_wf

[P,L:Type]. ∀[S:P ⟶ L ⟶ ℙ].  (points=P lines=L plsep=S ∈ ProjGeomPrimitives)


Proof




Definitions occuring in Statement :  mk-pgeo-prim: mk-pgeo-prim pgeo-primitives: ProjGeomPrimitives uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-pgeo-prim: mk-pgeo-prim pgeo-primitives: ProjGeomPrimitives pgeo-line: Line pgeo-point: Point record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q
Lemmas referenced :  eq_atom_wf uiff_transitivity equal-wf-base bool_wf assert_wf atom_subtype_base eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependentIntersection_memberEquality because_Cache functionExtensionality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality tokenEquality hypothesis lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality atomEquality independent_functionElimination productElimination independent_isectElimination instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry isect_memberEquality voidElimination voidEquality independent_pairFormation impliesFunctionality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[P,L:Type].  \mforall{}[S:P  {}\mrightarrow{}  L  {}\mrightarrow{}  \mBbbP{}].    (points=P  lines=L  plsep=S  \mmember{}  ProjGeomPrimitives)



Date html generated: 2018_05_22-PM-00_22_43
Last ObjectModification: 2018_03_30-PM-09_17_26

Theory : euclidean!plane!geometry


Home Index