Nuprl Lemma : geo-SCS-congruent
∀g:EuclideanPlane. ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .  cSCS(a;b;c;d) ≅ cd
Proof
Definitions occuring in Statement : 
geo-SCS: SCS(a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
geo-SCS_wf, 
set_wf, 
geo-point_wf, 
geo-congruent_wf, 
geo-between_wf, 
geo-SCO_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-colinear_wf, 
sq_stable__geo-congruent, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
setEquality, 
instantiate, 
independent_isectElimination, 
functionEquality, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .    cSCS(a;b;c;d)  \mcong{}  cd
Date html generated:
2018_05_22-AM-11_55_03
Last ObjectModification:
2018_03_30-PM-06_09_10
Theory : euclidean!plane!geometry
Home
Index