Nuprl Lemma : geo-SCS-congruent

g:EuclideanPlane. ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .  cSCS(a;b;c;d) ≅ cd


Proof




Definitions occuring in Statement :  geo-SCS: SCS(a;b;c;d) euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] and: P ∧ Q prop: euclidean-plane: EuclideanPlane guard: {T} uimplies: supposing a implies:  Q so_apply: x[s] sq_stable: SqStable(P) squash: T
Lemmas referenced :  geo-SCS_wf set_wf geo-point_wf geo-congruent_wf geo-between_wf geo-SCO_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-colinear_wf sq_stable__geo-congruent equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis applyEquality because_Cache sqequalRule lambdaEquality productEquality setElimination rename setEquality instantiate independent_isectElimination functionEquality productElimination independent_functionElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .    cSCS(a;b;c;d)  \mcong{}  cd



Date html generated: 2018_05_22-AM-11_55_03
Last ObjectModification: 2018_03_30-PM-06_09_10

Theory : euclidean!plane!geometry


Home Index