Nuprl Lemma : geo-SCS_wf
∀[g:EuclideanPlane]
  ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .
    (SCS(a;b;c;d) ∈ {v:Point| cv ≅ cd ∧ (v_b_SCO(a;b;c;d) ∧ Colinear(a;b;v)) ∧ (b ≠ d 
⇒ v ≠ SCO(a;b;c;d))} )
Proof
Definitions occuring in Statement : 
geo-SCS: SCS(a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-SCO: SCO(a;b;c;d)
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
geo-SCS: SCS(a;b;c;d)
, 
geo-SCO: SCO(a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
geo-midpoint: a=m=b
, 
uimplies: b supposing a
, 
basic-geometry-: BasicGeometry-
, 
guard: {T}
, 
cand: A c∧ B
, 
oriented-plane: OrientedPlane
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
geo-SC_wf, 
set_wf, 
geo-point_wf, 
geo-congruent_wf, 
geo-between_wf, 
geo-sep_wf, 
sympoint_wf, 
geo-sep-sym, 
geo-between-sep, 
geo-midpoint_wf, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-between-exchange3, 
equal_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent-symmetry, 
geo-congruent-sep, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
exists_wf, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-colinear_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
functionEquality, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
axiomEquality, 
setEquality, 
independent_pairFormation, 
dependent_pairFormation, 
inrFormation, 
inlFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[g:EuclideanPlane]
    \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .
        (SCS(a;b;c;d)  \mmember{}  \{v:Point| 
                                          cv  \mcong{}  cd  \mwedge{}  (v\_b\_SCO(a;b;c;d)  \mwedge{}  Colinear(a;b;v))  \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  v  \mneq{}  SCO(a;b;c;d))\}  )
Date html generated:
2018_05_22-AM-11_54_58
Last ObjectModification:
2018_03_30-PM-06_00_51
Theory : euclidean!plane!geometry
Home
Index