Nuprl Lemma : geo-SCS_wf

[g:EuclideanPlane]
  ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .
    (SCS(a;b;c;d) ∈ {v:Point| cv ≅ cd ∧ (v_b_SCO(a;b;c;d) ∧ Colinear(a;b;v)) ∧ (b ≠  v ≠ SCO(a;b;c;d))} )


Proof




Definitions occuring in Statement :  geo-SCS: SCS(a;b;c;d) euclidean-plane: EuclideanPlane geo-SCO: SCO(a;b;c;d) geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] geo-SCS: SCS(a;b;c;d) geo-SCO: SCO(a;b;c;d) euclidean-plane: EuclideanPlane subtype_rel: A ⊆B so_lambda: λ2x.t[x] and: P ∧ Q prop: implies:  Q so_apply: x[s] geo-midpoint: a=m=b uimplies: supposing a basic-geometry-: BasicGeometry- guard: {T} cand: c∧ B oriented-plane: OrientedPlane exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-SC_wf set_wf geo-point_wf geo-congruent_wf geo-between_wf geo-sep_wf sympoint_wf geo-sep-sym geo-between-sep geo-midpoint_wf geo-between-symmetry geo-between-inner-trans geo-between-exchange3 equal_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent-symmetry geo-congruent-sep oriented-colinear-append cons_wf nil_wf cons_member l_member_wf exists_wf geo-colinear-is-colinear-set geo-between-implies-colinear list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-colinear_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination applyEquality because_Cache sqequalRule lambdaEquality productEquality functionEquality productElimination independent_functionElimination dependent_set_memberEquality independent_isectElimination equalityTransitivity equalitySymmetry instantiate axiomEquality setEquality independent_pairFormation dependent_pairFormation inrFormation inlFormation isect_memberEquality voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[g:EuclideanPlane]
    \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .
        (SCS(a;b;c;d)  \mmember{}  \{v:Point| 
                                          cv  \mcong{}  cd  \mwedge{}  (v\_b\_SCO(a;b;c;d)  \mwedge{}  Colinear(a;b;v))  \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  v  \mneq{}  SCO(a;b;c;d))\}  )



Date html generated: 2018_05_22-AM-11_54_58
Last ObjectModification: 2018_03_30-PM-06_00_51

Theory : euclidean!plane!geometry


Home Index